FORMAL LANGUAGE AND AUTOMATA THEORY Paper-PC-CS-303A

Time: Three Hours]

[Maximum Marks: 75

Note: Attempt five questions in all, selecting one question from each unit. Question No. 1 is compulsory. All questions carry equal marks.

Compulsory Question

- 1. (a) What is Kleen closure and Positive closure?
 - (b) Define ambiguity in Context free grammar.
 - (c) Discuss in brief the steps in minimization of DFA.
 - (d) What is Universal Turing Machine?

UNIT-I

- 2. (a) Define DFA and design a DFA for the following over {a, b}: All strings that has atleast two occurrences of b between any two occurrences of a.
 - (b) Define Regular Expression? Explain about the Properties of Regular Expressions.
- 3. (a) Construct a DFA for the Regular expression (0+1)* (00+11) (0+1)*.

(b) Briefly discuss about Finite Automata with Epsilon - Transitions.

UNIT-II

- 4. (a) What is Pumping lemma? What are the applications of Pumping lemma? Discuss.
 - (b) Convert the following grammar to GNF:

 $S \rightarrow AB$

 $A \rightarrow aA|bB|b$

 $B \rightarrow b$

- 5. (a) What is a regular language? Prove that the set of all strings of 0's and 1's whose length is a prime number is not a regular language.
 - (b) Write a note on Chomsky Hierarchy of formal languages.

UNIT-III

- 6. Define PDA. Let G be the grammar given by: S → Aabb/ Aaa, A → Abb/A, B → bBB/A. Construct the PDA that accepts the language generated by this G.
- 7. (a) What is the difference between Moore and Mealy machines? Explain using suitable example.
 - (b) Construct a PDA accepting the set of all strings over {a, b} with equal number of a's and b's.

UNIT-IV

- 8. (a) What is Turing Machine? Construct a Turing Machine that will accept the Language consists of all palindromes of 0's and 1's.
 - (b) What is Rice's theorem? Give a proof of Rice's theorem.
- What do you Understand by undecidable problem? Discuss in detail the post correspondence problem.